欢迎访问粉煤灰综合利用杂志期刊官方网站 联系电话:0311-86692425 / 85820046
粉煤灰综合利用杂志
Fly Ash Comprehensive Utilization
主管单位: 河北省建筑科学研究院有限公司
主办单位: 河北省建筑科学研究院有限公司

 ● 中国科技核心期刊(中国科技论文统计源期刊)
 ● 中国核心期刊(遴选)数据库期刊
 ● 全国性建材科技期刊
 ● 河北省优秀期刊  
过刊浏览
查看更多 >
信息动态
查看更多 >
基于卷积神经网络的桥梁病害识别与裂缝特征测量方法
Bridge Damages Identification andMeasurement Method of Crack Features based on Convolutional Neural Network
PDF全文阅读

冯志慧1,曹文凯1,薛鹏涛2,梁志强3

 

 

(1.河南农业大学 信息与管理科学学院,郑州 4500022.河南省交通事业发展中心,郑州 450016 3.长安大学 公路学院,西安 710064)

 

 

摘要:为改进桥梁病害识别效率和质量,提出一种基于贝叶斯优化和卷积神经网络的深度学习算法,进行桥梁麻面、裂缝、露筋和剥落等4种桥梁病害识别;针对裂缝病害,建立以Mobilenet-v2特征提取网络的DeepLabv3+作为裂缝图像语义分割模型。结果表明:基于贝叶斯优化和卷积神经网络的深度学习算法对4种桥梁病害识别精度及鲁棒性基本保持不变,训练时间减少了约80%;通过裂缝图像语义分割模型和图像处理技术实现裂缝的精准分割和几何信息的自动提取计算,分割裂缝MIoU达到0.95。桥梁病害的高效和精准识别,为桥梁性能预测分析提供了更加准确的数据参考。

关键词:深度学习;病害识别;裂缝特征;卷积神经网络;贝叶斯优化;语义分割

中图分类号:TP391

文献标志码:A

文章编号:1005-8249202506-0140-10

DOI10.19860/j.cnki.issn1005-8249.2025-06-024

 

 

FENG Zhihui1,CAO Wenkai1,XUE Pengtao2,LIANG Zhiqiang3

 

 

(1.Henan Agricultural University College of Information and Management Science,Zhengzhou 450002,China

 

2.Transportation Development Center of Henan Province,Zhengzhou 450016,China

 

3.Chang’an University Highway College,Xi’an 710064,China)

 

AbstractTo improve the efficiency and accuracy of bridge defect identification,a deep learning algorithm based on bayesian optimization and convolutional neural networks is proposed for identification of four types of bridge defects:pockmarked surface,cracks,exposed rebar,and spalling.For cracks,DeepLabv3+ with Mobilenet-v2 as the feature extraction network is established as the semantic segmentation model for crack images.The results show that the proposed method maintains nearly the same accuracy and robustness in identifying the four types of bridge defects,while reducing training time by approximately 80%.Through the semantic segmentation model and image processing techniques,precise segmentation of cracks and automatic extraction of geometric information are achieved,with an MIoU of 0.95 for crack segmentation.The efficient and accurate identification of bridge diseases provides more precise data references for bridge performance prediction and analysis.

 

Key wordsdeep learning;damage identification;crack features;convolutional neural network;Bayesian optimization;semantic segmentation

基金项目:国家自然科学基金项目(51878059),河南省科技攻关项目(252102240037)

作者简介:冯志慧(1977—),女,博士,副教授。研究方向:机器学习。

通信作者:薛鹏涛(1978—),男,博士。研究方向:桥梁工程。

收稿日期:2023-04-07