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基于卷积神经网络的桥梁病害识别与裂缝特征测量方法
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摘　要：为改进桥梁病害识别效率和质量，提出一种基于贝叶斯优化和卷积神经网络的深度学习算法，进
行桥梁麻面、裂缝、露筋和剥落等４种桥梁病害识别；针对裂缝病害，建立以 Ｍｏｂｉｌｅｎｅｔ－ｖ２特征提取网络的
ＤｅｅｐＬａｂｖ３＋作为裂缝图像语义分割模型。结果表明：基于贝叶斯优化和卷积神经网络的深度学习算法对４种桥
梁病害识别精度及鲁棒性基本保持不变，训练时间减少了约８０％；通过裂缝图像语义分割模型和图像处理技术
实现裂缝的精准分割和几何信息的自动提取计算，分割裂缝ＭＩｏＵ达到０９５。桥梁病害的高效和精准识别，为桥
梁性能预测分析提供了更加准确的数据参考。

关键词：深度学习；病害识别；裂缝特征；卷积神经网络；贝叶斯优化；语义分割
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研究与应用

０　引言

基于深度学习的病害识别方法已成为桥梁检测

的新兴手段之一，特别是基于卷积神经网络 （ＣＮＮ）
的图像处理技术，具有效率高、可达性广等优点。

图像识别凭借其远距离、非接触的检测方式和高精

度、高效率的识别效果，在桥梁外观检测领域得到

广泛尝试 ［１］。

近年来，基于图像处理技术的病害检测识别方

法得到迅速发展。谢东阳等［２］在ＡｌｅｘＮｅｔ网络模型引
入ＩｎｃｅｐｔｉｏｎＲｅｓＮｅｔ模块替换Ｃｏｎｖ３和Ｃｏｎｖ４来提升模
型的特征提取能力。杨超等［３］提出了基于频率指标

和深度学习理论的桥梁损伤识别方法，目的是提高

桥梁损伤定位的有效性。Ｚｈｕ等［４］提出基于视觉特征

的桥梁缺陷检测方法，并通过迁移学习和卷积神经

网络实现了自动化图像分析与识别。车艳丽［５］对

ＡｌｅｘＮｅｔ做出了改进，提出一种新的卷积神经网络架
构，采用 Ｃａｆｆｅ深度学习框架进行路面裂缝目标检
测。马卫飞［６］提出了一种基于 ＣＮＮ的 ＤＢＣＣ分类模
型，用于桥梁裂缝等病害的识别，并结合窗口滑动

算法对桥梁裂缝检测，采用图像金字塔和 ＲＯＩ区域
相结合的搜索策略对算法进行加速。高小小［７］提出

了使用简化的脉冲耦合神经网络 （ＰＣＮＮ）进行裂缝
检测。

目前，桥梁病害识别模型多针对单一病害进行

设计，而在实际的桥梁检测过程中，桥梁构件常同

时出现多种病害。传统基于经验的超参数设置方法

已难以满足复杂场景下的训练需求［８］。在深度学习

训练中，图像分类模型引入批量归一化，在减少训

练步骤的同时保持模型精度［９］，残差学习框架则能

有效缓解深层网络的训练负担［１０］。裂缝作为桥梁检

测中的重点病害，王莉静等［１１］提出了一种改进

ＹＯＬＯｖ５的沥青路面裂缝检测方法，该方法能够降低
模型复杂度并加快推理速度，对网络局部特征捕获

和融合能力有所提升；陈军等［１２］采用反演可见光图

像方法和光谱匹配方法，实现了装配式工程易变形

结构裂缝红外微弱目标的识别；张建勋［１３］提出了构

建基于特征图的裂缝检测方法；朱苏雅等［１４］提出了

一种基于ＵＮｅｔ卷积网络的像素级、小样本的裂缝检
测方法，该方法能够准确完整地对桥梁裂缝进行提

取，且宽度测量准确。为实现桥梁表观病害的智能

识别和尺寸确定，有些学者提出了一系列的桥梁病

害识别与量化方法［１５－１８］。

综上可知，多数研究集中于病害 （尤其是裂缝）

的识别或分割，缺乏一个完整的能够同步处理多种

病害和量化几何特征信息的集成框架。此外，现有

方法在超参数优化上仍较多依赖人工经验。为克服

上述局限，旨在构建一个能够同步识别多种病害的

深度检测模型，提出一种基于贝叶斯优化的超参数

自动设置方法，获取最优参数组合，确保模型在多

病害联合训练中的鲁棒性。同时，针对裂缝病害需

进一步获取位置、尺寸等几何信息的需求，在建立

多病害检测模型的基础上，深度融合图像分割与处

理技术，实现裂缝几何特征的自动提取与计算。

１　方法实现框架

桥梁表观病害自动检测与几何特征提取方法，

主要包括 ＤＢＤＤ的桥梁表观病害识别、ＤｅｅｐＬａｂｖ３＋
的裂缝分割以及形态学的裂缝图像处理分析，方法

框架的流程如图１所示。其中，基于 ＤＢＤＤ的桥梁
表观病害识别是通过建立贝叶斯优化的 ＤＢＤＤ模
型，实现麻面、裂缝、露筋和剥落等４种病害类型
自动识别；基于 ＤｅｅｐＬａｂｖ３＋的裂缝分割通过建立
以 Ｍｏｂｉｌｅｎｅｔ－ｖ２特征提取网络的ＤｅｅｐＬａｂｖ３＋裂缝图
像语义分割模型，实现裂缝的精确分割；基于形态

学的裂缝图像分析实现了裂缝的几何信息的自动提

取及计算。
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２　ＤＢＤＤ的桥梁表观病害识别

２１　ＤＢＤＤ模型构建
桥梁病害检测模型 （ＤｅｅｐＢｒｉｄｇｅＤｅｆｅｃｔＤｅｔｅｃｔｉｏｎ，

ＤＢＤＤ）如图２所示，模型的具体参数见表１。该模
型是在Ｉｎｃｅｐｔｉｏｎ－ｖ３模型［９］的基础上进行改进，使

用了４层卷积层 （Ｃ１～Ｃ４）、４层池化层 （Ｐ１～Ｐ４）
和２层全连接层 （ＦＣ１－ＦＣ２），最后一层为输出层，
输出图像预测所属病害类型的概率。

为增加ＤＢＤＤ模型在多病害学习过程中的鲁棒
性，在卷积层后添加批量归一化层 （ＢａｔｃｈＮｏｒｍａｌｉｚａ
ｔｉｏｎ，ＢＮ）和ＲｅＬｕ层。同时，在全连接层 ＦＣ１层后
添加ｄｒｏｐｏｕｔ函数，其参数设置为０５。
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层
各层尺寸

高度 宽度 深度
层

核尺寸及步长

高度 宽度 深度 个数 步长

Ｌ１ ２２４ ２２４ ３ Ｃ１ ３ ３ ３ ３２ １
Ｌ２ ２２４ ２２４ ３２ ＢＮ
Ｌ３ ２２４ ２２４ ３２ Ｒｅｌｕ
Ｌ４ ２２４ ２２４ ３２ Ｐ１（ｍａｘ） ２ ２ ２
Ｌ５ １１２ １１２ ３２ Ｃ２ ３ ３ ３２ ６４ １
Ｌ６ １１２ １１２ ６４ ＢＮ
Ｌ７ １１２ １１２ ６４ Ｒｅｌｕ
Ｌ８ １１２ １１２ ６４ Ｐ２（ｍａｘ） ２ ２ ２
Ｌ９ ５６ ５６ ６４ Ｃ３ ３ ３ ６４ １２８ １
Ｌ１０ ５６ ５６ １２８ ＢＮ
Ｌ１１ ５６ ５６ １２８ Ｒｅｌｕ
Ｌ１２ ５６ ５６ １２８ Ｐ３（ｍａｘ） ２ ２ ２
Ｌ１３ ２８ ２８ １２８ Ｃ４ ２ ２ １２８ ２５６ １
Ｌ１４ ２８ ２８ ２５６ ＢＮ
Ｌ１５ ２８ ２８ ２５６ Ｒｅｌｕ
Ｌ１６ ２８ ２８ ２５６ Ｐ４（ａｖｅｒａｇｅ） ２ ２ ２
Ｌ１７ １４ １４ ２５６ ＦＣ１
Ｌ１８ １ １ １２８ Ｄｒｏｐｏｕｔ
Ｌ１９ １ １ １２８ ＦＣ２
Ｌ２０ １ １ ４ Ｓｏｆｔｍａｘ
Ｌ２１ １ １ ４ ｃｌａｓｓｏｕｔｐｕｔ

　　ＢＮ层是为保证训练过程中提高网络泛化能力，
加快网络收敛和训练速度而设置的归一化计算函数。

经过该层归一化处理后，上一层信息输入至下一层

时均值为０，方差为１，这种操作极大改善训练的鲁
棒性。ＲｅＬｕ层相比于传统的 Ｓｉｇｍｏｉｄ函数，其不存
在梯度爆炸或梯度消失问题。随着卷积神经网络深

度的增加，设置 ＲｅＬｕ层能明显保存神经元的非线
性，使得在多病害识别过程中不会因病害类型增多

而降低模型的泛化能力，ＲｅＬｕ函数的表达式为：
ｆ（ｘ）＝ｍａｘ（０，ｘ） （１）
Ｄｒｏｐｏｕｔ层是为提高模型泛化能力，在训练过程

中有意随机丢弃部分数据。主要原因是在训练过程

中，由于病害类型增加，每类病害照片数量又不完

全统一，且部分病害具有相似特征，这种现象将导

致模型在训练过程中出现过拟合的现象，进一步导

致识别精度下降。将 Ｄｒｏｐｏｕｔ层设置参数为 ０２，
即随机丢弃２０％信息。Ｄｒｏｐｏｕｔ层工作机制如图 ３
所示。

S

３　Ｄｒｏｐｏｕｔ
cM1BdefS

Ｆｉｇ３　Ｓｃｈｅｍａｔｉｃｄｉａｇｒａｍｏｆｔｈｅｗｏｒｋｉｎｇ
ｍｅｃｈａｎｉｓｍｏｆｔｈｅＤｒｏｐｏｕｔｌａｙｅｒ

２２　贝叶斯优化的模型训练
２２１　基于贝叶斯算法的超参数优化

传统的超参数优化并没有考虑到先验函数传递

后验函数的信息，即没有考虑上一次验证集的评估

结果对超参数优化选择带来影响。针对这一问题，

提出基于贝叶斯优化的调参算法，使得优化过程总

是向设置的预期方向进行优化。贝叶斯计算超参数

是基于给定的优化目标函数，通过样本点来迭代更

新目标函数的后验分布。当目标函数后验分布基本

与目标函数真实分布贴合则迭代停止，得到模型最

优参数。贝叶斯优化超参数示意图如图４所示。
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２２２　优化超参数范围设置
使用训练数据和验证数据作为输入，为贝叶斯

优化器创建一个目标函数，该目标函数设置为验证

集的分类误差。经过多次迭代，直至目标函数后验

分布基本与目标函数真实分布贴合，则迭代停止，

此时认为得到模型的最优参数。

构建的ＤＢＤＤ模型，需要设置贝叶斯优化的超
参数有：

（１）网络卷积深度：此参数控制网络的卷积层
数量，其域空间为 ［１，３］，取值为整数。

（２）初始学习率：此参数控制网络训练的初始
学习率，其域空间为 ［１０－５，１０－２］。

（３）随机梯度下降动量：此参数控制超参数更
新的平滑程度，减少随机梯度下降的噪声，其域空

间为 ［０８，０９８］。
（４）Ｌ２正则化强度：此参数控制正则化强度，

以防止过拟合，其域空间为 ［１０－１０，１０－２］。

３　ＤｅｅｐＬａｂｖ３＋的桥梁裂缝几何特征提取

Ｍｏｂｉｌｅｎｅｔ－ｖ２［１５］借鉴了 ＭｏｂｉｌｅＮｅｔ－ｖ１和 ＲｅｓＮｅｔ
的优点，在保持良好的计算速度和较小的存储需求

基础上，通过线性瓶颈和倒残差的方式提升网络性

能。因此，利用 Ｍｏｂｉｌｅｎｅｔ－ｖ２作为 Ｄｅｅｐｌａｂｖ３＋模
型的特征提取网络，以提高训练速度及识别精度，

ＤｅｅｐＬａｂｖ３＋模型的网络结构如图５所示。选择交叉
熵作为模型的损失函数，学习率由贝叶斯优化算法

优化，初始值设为 ０００００１，梯度下降算法选择为
Ａｄａｍ优化算法。
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４　算例验证

４１　数据集制作和标定
４１１　数据集制作

为确保有足够的病害图像对模型进行训练，采

用滑动窗口算法对图像进行自动裁切，这样不仅增

加训练图像数量，同时还能保证每张图像像素大小

保持一致。原始的病害图像尺寸为４５００３２００像
素。定义滑动窗口大小为２２７２２７像素，窗口的滑
动步长为２２７像素。经过滑动窗口自动裁剪后，单张
原始的病害图像可以得到２６６张小尺寸图像。裁剪后
的小尺寸裂缝图像如图６所示。
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Ｆｉｇ６　Ｄａｔｓｅｔｐｒｏｄｕｃｔｉｏｎ

４１２　数据集标定
数据集中包含桥梁麻面、裂缝、露筋和剥落等４种

桥梁病害图像，经ＨＳＶ（色调Ｈｕｅ，饱和度Ｓａｔｕｒａｔｉｏｎ，
明度Ｖａｌｕｅ）变换、平移和镜像等数据增强操作，将
增强后图像扩充至原始病害数据集进行训练，最后

划分训练集、验证集和测试集，数据集图像的划分

数量见表２。
对于训练集，需要对子图像进行标定，设置标

签表明图像的所属病害类别，标定的工具如图７所
示。在数据集制作完成以后，将大量含有标签的图

片样本数据输入到 ＤＢＤＤ网络模型进行训练，结合
_

２　ＤＢＤＤ
[\wxyzbuv

Ｔａｂｌｅ２　Ｄｉｓｅａｓｅｃｌａｓｓｉｆｉｃａｔｉｏｎｄａｔａｓｅｔｂａｓｅｄｏｎ
ｃｏｎｖｏｌｕｔｉｏｎａｌｎｅｕｒａｌｎｅｔｗｏｒｋ

类别 麻面 裂缝 露筋 剥落

滑动窗口切割后 １６００ １５００ ３２０ ２１４
数据增强后 ３２００ ３０００ １６５０ １０７０
比例 训练集∶验证集∶测试集＝７∶２∶１

S
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ＭａｔｌａｂＧＵＩ
|}3~swxSoqp���M��

Ｆｉｇ７　Ｄｅｓｉｇｎａｓｉｍｐｌｅｄｉｓｅａｓｅｉｍａｇｅｃｒｏｐｐｉｎｇａｎｄｃａｌｉｂｒａｔｉｏｎ
ｔｏｏｌｂｏｘｂａｓｅｄｏｎＭａｔｌａｂＧＵＩ

损失函数及反向传播算法，不断调整病害分类器的

网络参数，优化算法模型，从而实现预测病害的有

无及类型。

对于验证集，同样需要制作对应子图像的标签，

目的是用于验证训练完毕的网络模型，结合相关评

价指标对模型训练试验结果作有效评价，以便及时

发现问题，调整网络结构。

４２　病害图像的预处理
除了ＨＳＶ变换、平移和镜像等图像预处理操作

之外，为加快训练过程中梯度下降求最优解的速度，

将图像进行归一化和均值减法处理，计算公式如下：

ｙ＝
ｘ－ｘｍａｘ
ｘｍａｘ－ｘｍｉｎ

（２）

式中：ｙ为转化后的像素值；ｘ为转化前的像素值；ｘｍｉｎ
为样本图片最小像素值；ｘｍａｘ为样本图片最大像素值。

珋ｘ＝１Ｎ∑
Ｎ

ｎ－１
ｘｎ （３）

珓ｘ＝ｘ－珋ｘ （４）
经过归一化和均值减法处理后的效果如图８所

示。按照此方法进行批量处理后，可以移除图

（ａ）
��tSo
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片中的共同部分，进一步凸显个体差异，利于加快

训练速度。

４３　ＤＢＤＤ模型训练
模型训练环境为 ＣＰＵＩｎｔｅｌＸｅｏｎＳｌｉｖｅｒ，内存为

３２ＧＢ，ＧＰＵ为ＮＶＩＤＩＡＱｕａｄｒｏＰ４０００，内存为８ＧＢ。
网络模型基于Ｍａｔｌａｂ２０１９ｂ软件实现，使用单ＧＰＵ加
速计算。

执行贝叶斯优化后，验证集误差最小为００３８０，
优化过程如图９所示，此时最优网络参数见表３。从
图９中可以看出，迭代过程中出现４个波峰。主要原
因是针对多种病害的训练，前一个病害确定适合的
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验证集误差 卷积深度 初始学习率
随机梯度

下降动量
Ｌ２正则化强度

００３８０ ３ ００００７５ ０９３６１ １３９１２ｅ－５

超参数后，后一个病害会在前一个病害的基础上，

进一步寻找同时适用于这两种病害的超参数，形成

波峰。这样通过迭代前一种病害的超参数基础上，

逐步寻找适用于全部病害的超参数，使得最终得到

的目标值和理论目标值尽可能接近，满足多种病害

同步识别。

采用随机梯度下降法 （ＳｔｏｃａｓｔｉｃＧｒａｄｉｅｎｔＤｅｓｃｅｎｔ，
ＳＧＤ），以贝叶斯优化后的超参数进行模型训练，迭
代轮次设置为２０，训练和验证过程中病害的准确度
曲线和损失曲线如图１０所示。
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在第１到６迭代轮次中，准确率一直处于增长阶
段，损失值则处于下降阶段。在前２个迭代轮次中，
准确率上升较快，损失曲线下降较快。第３和４迭代
轮次，准确率上升速率放缓，损失下降速率也逐渐

放缓。在第４～１０迭代轮次中，正确率与损失值比较
平稳，没有出现剧烈波动情况。因此，可以判断没

有出现过拟合现象，训练结果是可行的。

４４　模型验证结果和性能对比
最终的训练结果显示，训练阶段准确率平均值

达到９８５３％，验证阶段准确率平均值为 ９７６９％，
验证损失值为００６４６，最终测试结果见表４。
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测试集

误差

麻面准

确率／％
裂缝准

确率／％
露筋准

确率／％
剥落准

确率／％
平均准

确率／％
００４９３ ９０９ ９７０ ９８２ ９７２ ９５１

　　测试集误差００４９３略大于验证集误差 ００３８，
这是因为贝叶斯优化采用验证集误差最小的原则来

确定最佳网络，而不采用网络对测试集进行评价。

因此，测试误差略高于验证误差。在测试集中，各

个病害类型的检测准确率都超过 ９０％。由此可见，
网络表现出良好的识别性能。

选用４个评价指标：精确度 （Ｐｒｅｃｉｓｉｏｎ）、召回
率 （Ｒｅｃａｌｌ）、Ｆ１分数 （Ｆ１ｓｃｏｒｅ）以及混淆矩阵进
行评估模型性能，前３个评价指标的计算公式如下：

Ｐ＝
ＮＴＰ

ＮＴＰ＋ＮＦＰ
（５）

Ｒ＝
ＮＴＰ

ＮＴＰ＋ＮＦＮ
（６）

Ｆ１＝ ２ＰＲＰ＋Ｒ （７）

将ＴＰ、ＦＮ、ＦＰ、ＴＮ一起呈现在同一个表格中，
就可以得到一个表征分类结果的矩阵，称为混淆矩

阵 （ＣｏｎｆｕｓｉｏｎＭａｔｒｉｘ）。常见的二分类问题的混淆矩
阵见表５。贝叶斯优化后的ＤＢＤＤ模型，在测试集上
进行分类，得到混淆矩阵如图１１所示。
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混淆矩阵
预测值

正类 负类

真实值
正类 ＴＰ ＦＮ
负类 ＦＰ ＴＮ
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此外，还选取支持向量机 （ＳＶＭ）模型以及
Ｉｎｃｅｐｔｉｏｎ－ｖ３－ＴＬ进行分类性能对比，以裂缝病害的
识别效果为例，对比结果见表６。
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Ｔａｂｌｅ６　Ｃｏｍｐａｒｉｓｏｎｏｆｎｅｔｗｏｒｋｃｒａｃｋｉｄｅｎｔｉｆｉｃａｔｉｏｎｐｅｒｆｏｒｍａｎｃｅ
识别算法 精确度／％ 召回率／％ Ｆ１分数／％ 训练时间／ｈ
ＤＢＤＤ模型 ９２４ ９７０ ９４６ ０５
ＳＶＭ ８３０ ９００ ８６４

Ｉｎｃｅｐｔｉｏｎ－ｖ３－ＴＬ ９５０ ９７７ ９６３ ２５

　　ＤＢＤＤ模型与 ＳＶＭ模型相比，性能更为优异。
与Ｉｎｃｅｐｔｉｏｎ－ｖ３－ＴＬ模型性能相差不大，Ｉｎｃｅｐｔｉｏｎ－ｖ３
性能略胜一筹。但是从训练时间相比，在训练相同

迭代２０个轮次的情况下，ＤＢＤＤ模型仅耗费０５ｈ，
而Ｉｎｃｅｐｔｉｏｎ－ｖ３模型耗费２５ｈ。由此可见，建立的
ＤＢＤＤ模型在相同数据量、相同迭代次数下，训练时
间可以明显缩短。

４５　裂缝图像分割和几何特征测量
４５１　裂缝图像分割

建立的ＤｅｅｐＬａｂｖ３＋图像语义分割模型与其他经
典图像语义分割模型ＦＣＮ、Ｕ－ｎｅｔ、Ｓｅｇ－Ｎｅｔ模型以
及文献 ［８］提出的ＶＧＧ－１９－ＦＣＮ模型进行性能对
比。选用相同的软硬件配置和数据集 （训练集、验

证集、测试集）。选用 ＭＡＰ、ＭＩｏＵ、ＦＷＩｏＵ为模型
评价指标，以评价各网络分割性能。各评估指标的

计算公式如下：

ＭＡＰ＝ １
ｋ＋１∑
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（１０）

各模型在测试集上各评价指标结果见表７。
_
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分割模型 ＭＡＰ ＭＩｏＵ ＦＷＩｏＵ
ＤｅｅｐＬａｂｖ３＋ ０９７ ０９５ ０９８
ＶＧＧ１９－ＦＣＮ ０９５ ０９２ ０９７
ＦＣＮ ０９４ ０９１ ０９７
Ｓｅｇ－Ｎｅｔ ０９２ ０８７ ０９６
Ｕ－Ｎｅｔ ０９３ ０８６ ０９５
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研究与应用

　　以５张裂缝图像为示例，进一步展示分割图结
果，直观对比各模型性能差异，并以 ＭＩｏＵ为指标评
价量化分割效果，分割效果图及ＭＩｏＵ指标见表８。

图片１～图片３中的照片分辨率较低，裂缝宽度
相对较小。照片有些裂缝位置，肉眼难以准确辨别。

在图片 １中，ＤｅｅｐＬａｂｖ３＋网络和 ＦＣＮ识别效果较
好，ＭＩｏＵ达到０７以上。而 Ｓｅｇ－Ｎｅｔ网络仅仅识别
出一小部分。在图片２中，裂缝宽度不一，各网络在
宽度较大处识别效果良好；而在裂缝宽度较小处，

清晰度模糊位置，ＤｅｅｐＬａｂｖ３＋网络识别效果较其他
图片更好。ＶＧＧ１９－ＦＣＮ识别效果也不错，大致呈现
了裂缝走向。Ｕ－Ｎｅｔ网络虽然大致识别出裂缝走向，
但是结果中也呈现出噪点较多的缺点。在图片３中，
裂缝识别也较为模糊，各网络识别分割图均有断裂。

相对而言，ＤｅｅｐＬａｂｖ３＋网络分割效果较好。在图片４
和图片５中，裂缝宽度相对较大，各网络模型均能分
割出裂缝走向及位置，从ＭＩｏＵ指标看，ＤｅｅｐＬａｂｖ３＋
裂缝分割模型性能较为稳定，分割效果较优。

_
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图片方法 图片１ 图片２ 图片３ 图片４ 图片５

裂缝原始

子图像

Ｄｅｅｐｌａｂｖ３＋

ＭＩｏＵ：０７３１ ＭＩｏＵ：０８７６ ＭＩｏＵ：０８０３ ＭＩｏＵ：０９５０ ＭＩｏＵ：０９０８

Ｖｇｇ１９－ＦＣＮ

ＭＩｏＵ：０６９９３ ＭＩｏＵ：０７９６ ＭＩｏＵ：０７０２ ＭＩｏＵ：０９４４ ＭＩｏＵ：０８９０

ＦＣＮ

ＭＩｏＵ：０７５４ ＭＩｏＵ：０８２７ ＭＩｏＵ：０６７９ ＭＩｏＵ：０９５０ ＭＩｏＵ：０８７０

Ｓｅｇ－Ｎｅｔ

ＭＩｏＵ：０５３８ ＭＩｏＵ：０７６０ ＭＩｏＵ：０６１７ ＭＩｏＵ：０９３２ ＭＩｏＵ：０８６３

Ｕ－Ｎｅｔ

ＭＩｏＵ：０６５９ ＭＩｏＵ：０７４６ ＭＩｏＵ：０６４２ ＭＩｏＵ：０９２０ ＭＩｏＵ：０８３３
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４５２　裂缝几何特征测量
桥梁裂缝图像经过ＤｅｅｐＬａｂｖ３＋模型语义分割处

理后，得到的二值化裂缝图像中可能包含大量的噪

点。在进行几何特征测量之前，首先需要利用形态

学方法对裂缝二值化图像进行二度去噪和去毛刺处

理，以保证裂缝的连续性。具体流程包括：

（１）形态学去噪与毛刺处理：利用形态学方法
对ＤｅｅｐＬａｂｖ３＋模型输出的二值化裂缝图像进行二次
去噪，提升裂缝连续性，减少干扰。

（２）连通域标记与分离：对图像中可能存在的
多条裂缝进行区分，形成独立连通域，以便逐条分

析其几何特征。

在完成图像预处理与连通域划分的基础上，对

每一条裂缝进行以下三项几何参数测量：

（１）裂缝方向测量
首先，对于标记每个裂缝区域的连通域，在处

理该裂缝时，隐去其他裂缝区域，得到仅包含每条

裂缝连通区域的二值图像。然后，遍历整个二值图

像，得到每个裂缝像素的坐标，计算这些裂缝像素

横坐标差值Ｈ，纵坐标差值Ｖ，然后根据横纵坐标比
值及反三角函数，计算出裂缝倾斜角度。

（２）裂缝长度测量
首先，采用 Ｚｈａｎｇ－Ｓｕｅｎ细化算法提取裂缝骨

架，统计裂缝骨架图像素个数。然后，按照像素标

定得到的转换系数，将裂缝骨架图中的像素个数转

化为裂缝真实物理长度。

（３）裂缝宽度测量
首先，基于边缘提取算法得到裂缝边缘的二值

图像，对裂缝边缘二值图像扫描得到裂缝边界坐标。

然后，采用最小距离法计算边界中每点的裂缝像素

宽度，然后对所有裂缝宽度值取平均值、最大值。

最后，根据像素标定转换系数，得到裂缝最大宽度

及裂缝平均宽度物理值，具体计算流程如图１２所示。
为了验证该方法的可行性，以５个裂缝图像为例，

计算裂缝宽度、长度和走向等几何信息，具体计算结

果见表９。然而，由于缺少专业的裂缝宽度测量仪器作
为基准，目前尚无法验证算法精度。后续研究将结合专

业测量设备，进一步开展算法精度验证与优化工作。

_
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图片 分割图 长度／ｍｍ 最大宽度／ｍｍ 平均宽度／ｍｍ 角度／（°）

５８３３ ６０１ ４０３ １４３５

５０７２ ３９７ ２３１ －７３２０

５８０７ ５２０ ３９６ －３８２９

２７９０ ３１８ １８２ －２７５８

６６７０ ３５３ ２７５ －４４４

６５４３ ５９８ ３７６ ５５４９
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５　结论

为实现桥梁表观病害的高效识别与裂缝几何特

征的精准测量，构建了一个集病害分类、语义分割

与图像处理的集成框架。通过系统的研究与验证，

得出以下主要结论：

（１）提出了一种基于贝叶斯优化的多病害自动
识别模型 （ＤＢＤＤ）。该模型通过贝叶斯算法自动寻
优超参数，有效克服了传统方法对人工经验的依赖。

模型在测试集上的平均识别准确率达到９５１％，在
保证与Ｉｎｃｅｐｔｉｏｎ－ｖ３等先进模型相近识别精度的同
时，将训练时间显著缩短了约８０％。

（２）建立了一种新的裂缝语义分割与几何特征
提取方法。分割模型在测试集上ＭＩｏＵ值为０９５，其
分割性能优于 ＦＣＮ、Ｕ－Ｎｅｔ等经典模型。结合形态
学处理和连通域分析技术，成功实现了对裂缝长度、

最大宽度、平均宽度和倾斜角度等关键几何参数的

自动化、定量化测量。

（３）综合而言，本研究提出的集成框架，成功
地将病害分类、裂缝分割与几何量化功能融为一体，

证明了深度学习技术在桥梁表观病害自动化检测中

的应用潜力。该方法不仅提升了病害识别的效率，

更能为桥梁的性能预测与养护决策提供精确的数据

支撑，具有很大的工程应用价值。未来的研究将侧

重于引入专业测量仪器，进一步验证与提升几何特

征测量的绝对精度。
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