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Bridge Damages Identification and Measurement Method of Crack Features based on Convolutional Neural Network
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Abstract: To improve the efficiency and accuracy of bridge defect identification, a deep learning algorithm based on bayesian
optimization and convolutional neural networks is proposed for identification of four types of bridge defects: pockmarked surface,
cracks, exposed rebar, and spalling. For cracks, DeepLabv3 + with Mobilenet — v2 as the feature extraction network is
established as the semantic segmentation model for crack images. The results show that the proposed method maintains nearly the
same accuracy and robustness in identifying the four types of bridge defects, while reducing training time by approximately
80% . Through the semantic segmentation model and image processing techniques, precise segmentation of cracks and automatic
extraction of geometric information are achieved, with an MIoU of 0.95 for crack segmentation. The efficient and accurate
identification of bridge diseases provides more precise data references for bridge performance prediction and analysis.
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Fig.2 Schematic diagram of DBDD model network structure
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Fig.3 Schematic diagram of the working
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Table 2 Disease classification data set based on
convolutional neural network
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Fig.7 Design a simple disease image cropping and calibration
toolbox based on Matlab GUI
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Fig.8 Preprocessing effect of crack sample image
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Fig.9 Verify set Bayesian optimization results
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Table 3 The optimal parameter takes the value

RibERE  BREE  weesx POV
T
0.0380 3 0. 000 75 0.936 1 1.391 2¢7°°

SRR, JF— W HESTE — 0 F 5Ll b,
HE— 20 - [A) B 3 P T3 i 3 1 28, TR R
P o XA 3 2 ACHT — o 3 i 2 RO |
B FHIE T 20N E S5, R RAN
) H R E AT S B ARER AT RER T, il 2 2 FioR
[ 25 R

K BENLAL T B3 (Stocastic Gradient Descent ,
SGD), VAU i fifb )5 0 S Ha AT A 2k, 1%
PRECURVEE A 20, I 2 56 UE 1 A v s 35 10 o f 3
iR AN 2k M 2 an e 10 fas

100 N Y
90 {104 i

=l
3

i 60 e

(RS FR )
~ 30 4

20 - o -l

10 ; m [0 , .20
0 500 1000 1500 2000 2500

<A
(a) ZRey Ao 2k

fitk

(BT
%

— o - il
N O 20 o
0 500 1 000 1500 2 000 2500

AR
(b) IRk Lk
E 10 DBDD =3 i pY T EFIR K f £

Fig. 10 Accuracy and loss curves for DBDD model training
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Table 4 Optimal network set test results
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Table 5 the confusion matrix for two class
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Fig. 11 Confusion matrix of Test set

BEAh, b B FF [ AL (SVM) B 5 LA
Inception — v3 — TL JEAT /R AMERERT L, DIZREENTH (1
PUNBCR B, XA R LR 6.,

R6  FLKIARIFAEEREXT L

Table 6 Comparison of network crack identification performance

PR W/ % BIZE/ % F1 580 % YIGRAFE/h
DBDD #254 92. 4 97.0 94. 6 0.5
SVM 83.0 90.0 86. 4
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Table 7 Comparison of network segmentation
performance evaluation

53 FIRR MAP MIoU FWIoU
DeepLabv3 + 0.97 0.95 0.98
VGG19 - FCN 0.95 0.92 0.97

FCN 0.94 0.91 0.97

Seg — Net 0.92 0. 87 0.96

U - Net 0.93 0. 86 0.95
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Table 8 Comparison of crack image segmentation effects
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Table 9 Measurement of crack geometric feature information ( pixel calibration coefficient of 0. 253 6)

53# K/ mm K G B/ mm P53/ mm s ()
58.33 6.01 4.03 14.35
50.72 3.97 2.31 -73.20
58.07 5.20 3.96 -38.29
27.90 3.18 1.82 -27.58
66. 70 3.53 2.75 —4.44
65. 43 5.98 3.76 55.49




6 1

G RSE . TR A M4 R 2R H S

SUBEFFIEIN 5 07 1% 149

BRI A

Iy B AT AR

MR RIS

/MR

ST, T
HETEHRIRH
!
brsE RECEAE N
PR
!

E12 REFETEREER
Fig. 12 Crack width calculation flowchart

5 #ig

N SEBUT GERWLG H 14 fm AR ZREE TL A
MEAOREHENRL, M T — DR E K 1 L H
HEGAL B R RAESE . it R SR E S B,
PRI LU 224518

(1) $&H 7 —Fl2E T DU Ak 19 290 5 A 3h
PR (DBDD) %A% R 2o D3350k B 3 5
S HL, AR TG T AR N T 250 AR
R AR - BRI MER R 5 95. 1% , 1
PRIES Inception — v3 &5 g AR AR AT P 50K L 114 1)
I, CREIZR ] 225 460 129 80%

(2) ST — o i 24E T Lok %1 5 LA R AE
ROk o FIBIAE A4 | MloU {75 0.95, H
OYEIEREILT FCN, U - Net 2528 LRI, 455 TB 25
FALBEAGE I EOAR, BB T X R K
BORTERE V-2 5 B MMBURY A 32 25 e H Ll 2 8y
Haife., &R,

(3) ZRFIME, AUTHR S AR RHESR, Wl
R e AR RS LT AL D RER D — 1K,
UERA TR BE “7 > SR AL B2 5 A Sh AL i
MIRE I S0 207 I AR TE 1 3 U I R0R
SERE AR 14 1 BE TN 55 77 7 ke SR 41 NS Al 114 2 Bl
SO, BAARKM TR A (E . R R A9 0F 52 4 Il
HTGIAT MR Ry, PR 5 52T L %F
UE I Sk ) 2 XA 2

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[18]

z X o

PURRE, BEERT, S, & AR RN KOE M HOR 5k
[J]. hEAEKER, 2017, 30 (11): 63 -80.

WARIH, 2R, WK BT I AlexNet 5 BUM 22 W 2% 1
FEEREF IR [T]. Wde TR RS (ARE¥00,
2021, 38 (4): 102 -106.

i, XPL, XNEAL, 4. A BBUR GRS 7 R 4
PRI BT [J]. BMORZEEFIA, 2024, 38 (4): 123-128.
ZHU J, ZHANG C, QI H, et al. Vision — based defects detection
for bridges using transfer learning and convolutional neural networks
[J]. Structure and Infrastructure Engineering, 2020, 16 (7):
1037 —1049.

ZEHATE. BT UREEAE T 1 BAE 4 2 5 R B B R WA S 9B
[D]. Pu%. KRR, 2018.

LR FETIREE S AR AGER N BRI [D]. W%
BRpEImE R, 2018.

/NN, SETURBE AR I TR EE AR R ARLE A 5 328 [D]. 7
Z: BRPIIIFERSE, 2018.

KT, AT T AT 2 0 4 FE A 3
WF5E [D]. V4%, KR, 2019.

IOFFE S, SZEGEDY C. Batch normalization: accelerating deep

ZLAERG I v ) 1 T

network training by reducing internal covariate shift [ J]. JMLR.
org, 2015, 37, 448 —456.

HE K, ZHANG X, REN S, et al.
image recognition. IEEE, 2016 770 -778.

TR, INESR, AEAE, 5. WG YOLOVS 990 i i 244
Rl gy (1], WHE TR EIR (AREEM) , 2024, 41
(3): 67-73, 9.

R, 5, JREHE. SRR TR S A AR AL IMET F
WU (1] B EEReE& R, 2023, 37 (4). 122 -
127.

SR, TRAE P PR R L SR LA A [T
BEIREFAFI, 2025, 39 (2): 164 —168.

KopE, HEE, RN, % ORM U- Net BRI LAY
PRI [T]. VEL R PR R4, 2019, 46 (4):
35-42.

Tel, R, BKIL, 4. JEF i Faster R-CNN 5 U -
Net B MR E P S RS [T]. KER¥%4M (A
SREFER) , 2024, 54 (3): 627 -638.

RENRS, 2. FEFWE¥ I WNERE S S8k (1],
R REZIR (AR , 2022, 52 (3): 516-522.
RINE, XIEWE, PR, 5. LT YOLOVS Ml U - Net3 + (4
RAGERRRPI S [T W8 R M (ARBED ,
2023, 50 (5): 65-73.

TR, AR, RERL, SE. RTINS
WRIEEE (1], HEAKFR, 2023, 36 (3): 188-201.

Deep residual learning for



