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Seismic Dynamic Response Analysis of Railway Tunnel Lining Structures across Faults
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Abstract: The geological situation in the southwest mountainous area of China is complicated. During the construction of
mountain tunnel, it is inevitable to cross the fault fracture zone, and the cross — fault tunnel is easy to be destroyed under the
action of earthquake. In order to study the basic law of dynamic response of cross — fault tunnel under earthquake action, Yiliang
tunnel project of Chongqing — Kunming high — speed Railway is taken as the research object, the seismic dynamic response of
cross — fault railway tunnel is analyzed by FLAC 3D based on wave theory and finite difference simulation method. In the
analysis, the influence of ground motion excitation direction and tunnel spacing on tunnel siress and displacement is considered.
The results show that both transverse and longitudinal ground motion excitation directions are unfavorable, and the effects of
transverse and longitudinal ground motion should be taken into account in seismic design. Tunnel spacing has an important effect
on the seismic response of the tunnel. With the increase of tunnel spacing, the interaction between the tunnels will gradually
weaken. When the tunnel spacing exceeds 3 times the tunnel diameter, the interaction between the tunnels can be basically

ignored. The findings of this study can provide a theoretical basis and engineering reference for the seismic design and safety
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assessment of cross — fault railway tunnels.

Key words: railway tunnel; fault fracture zone; numerical simulation; wave theory; dynamic response
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Fig. 1 Geological model of Yiliang Tunnel
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Table 1 Calculation parameters of surrounding rock, fault and lining

MR Gifis FRI1 NEEEAMA
ERL e S /GPa MEE /N4 J (N/m’) /kPa /()
liEk=) 5.38 0.32 21.00 200 39
172 1.50 0.38 17. 69 50 27
MW 30.0 0.2 22
ZIRE) 31.5 0.2 25
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Fig. 3 Time history curve of ground motion acceleration
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Fig. 5 Two - dimensional model of wave theory analysis
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Fig. 6 Peak stress response of different parts of the tunnel
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Fig.7 Peak displacement response of different parts of the tunnel
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Fig. 8 Peak stress responses at different parts of the tunnel
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